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In this paper, we propose a saturation control scheme for linear parameter-varying (LPV)
systems from an antiwindup control perspective. The proposed control approach is advantageous
because it can be thought of as an augmented control algorithm from the existing control system.
Moreover, the synthesis condition for an antiwindup compensator is formulated as a linear
matrix inequality (LMI) optimization problem and can be solved efficiently. We have applied the
LPV antiwindup controller to an F-16 longitudinal autopilot control system design to enhance
aircraft safety and improve flight quality in a high angle of attack region.

Introduction

THE flight control system of a tactical aircraft has
different performance goals for low angle of attack

and high angle of attack regions. For example, in a low
angle of attack scenario, pilots desire fast and accurate
responses for maneuver and attitude tracking, whereas
in a high angle of attack region, the flight control
emphasis lies in the maintainability of aircraft stabil-
ity with acceptable flying qualities. The potential of
high angle of attack flight presents many challenges
to the control designers. Due to aerodynamic surface
saturation and control surface effectiveness, unconven-
tional actuators such as thrust vectoring are suggested
for aircraft maneuvering at and beyond the stall an-
gle of attack. However, incorporation of additional
thrust vectoring hardware could complicate the design
of flight control laws in the poststall regime.1 Robust
multivariable control methods have been recently ap-
plied to a variety of aircraft models2 to demonstrate
their abilities to fly at high angles of attack (see Ref.
3 and references therein). Besides control law design,
another major issue of high angle of attack flight is
control saturation. It is well recognized that actua-
tor saturation degrades the performance of the flight
control system and may even lead to instability. The
destabilizing effects of actuator saturation have been
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cited as contributing factors in several mishaps in-
volving high performance aircraft.4 For this reason,
various methods of preventing instability due to sat-
uration have been examined, which include allocating
control effectors and command scaling and prioritiza-
tion.

A popular approach to control saturation is the
antiwindup method that employs a two-step design
procedure. The main idea of antiwindup control is
to design the linear controller ignoring the saturation
nonlinearities first and then add antiwindup compen-
sation to minimize adverse effects of the saturation
on closed-loop performance. Desirable design require-
ments for antiwindup compensation subject to actua-
tor saturation are the closed-loop system stability, re-
covery of the linear design specifications in the absence
of saturation (linear performance recovery), and the
smooth degradation of the linear performance in the
presence of saturation (graceful performance degrada-
tion). Like other saturation control techniques, the
antiwindup compensator design often assumes a linear
time-invariant (LTI) plant and models the saturation
block as a sector-bounded nonlinearity. Then absolute
stability conditions (such as Popov, circle theorems)
are applied for the stability and performance analy-
sis.5

A general framework that unifies a large class of ex-
isting antiwindup control schemes in terms of two ma-
trix parameters was proposed in Ref. 6. This frame-
work is useful for understanding different antiwindup
control schemes and motivates the development of
systematic procedures for designing antiwindup con-
trollers that provide guaranteed stability and perfor-

1 of 11

American Institute of Aeronautics and Astronautics Paper 2003-5495



mance. Early results in antiwindup control often have
the drawback of lacking rigorous stability analysis and
clear exposition of performance objectives. Using an
extended circle criterion, the synthesis condition of
static antiwindup controllers is formulated as a linear
matrix inequality (LMI) problem in Ref. 7. A recent
study in Ref. 8 has further revealed that antiwindup
control for stable open-loop LTI systems can be solved
globally as an LMI problem with the order of anti-
windup compensator no more than the plant’s order.
Alternatively, the Popov stability condition has also
been applied to the antiwindup compensator design
problem.9 However, the synthesis condition of the sat-
uration controller is given in coupled Riccati equations,
which is difficult to solve for its optimal solution. Most
previous antiwindup compensator designs are only ap-
plicable to open-loop stable LTI systems, limiting their
usefulness for practical problems. When the system is
nonlinear and open-loop unstable, the control synthe-
sis problem becomes very difficult to solve, therefore,
global stabilization cannot be achieved.10,11 However,
in many control systems including flight control sys-
tems, the system dynamics are inherently nonlinear
and their linearizations are strictly unstable.

The motivation for this research is twofold. First,
the antiwindup control scheme for LTI plants in Ref.
12 is generalized to linear parameter-varying (LPV)
systems. This generalization is very important be-
cause of the relevance of LPV systems to nonlinear
systems. In fact, the LPV model can be thought of
as a group of local descriptions of nonlinear dynam-
ics. The antiwindup compensation augments existing
control systems by maintaining stability and recov-
ering control performance when actuator saturated.
Second, saturation control for aircraft under large ma-
neuver operations is critical due to safety concerns.
The proposed antiwindup compensation can be devel-
oped by augmenting existing flight control algorithms.
The consequence is enhanced reliability and an ex-
panded flight envelope. In particular, we demonstrate
adequate flight control performance using LPV anti-
windup control in a high angle of attack scenario.

The notation in this paper is standard. R stands for
the set of real numbers and R+ for the non-negative
real numbers. Rm×n is the set of real m × n ma-
trices. The transpose of a real matrix M is denoted
by MT . Ker(M) is used to denote the orthogonal
complement of M . A block diagonal matrix with
submatrices X1,X2, . . . , Xp in its diagonal is denoted
by diag {X1,X2, . . . , Xp}. We use Sn×n to denote
the real symmetric n × n matrices and Sn×n

+ to de-
note positive definite matrices. If M ∈ Sn×n, then
M > 0 (M ≥ 0) indicates that M is positive definite
(positive semidefinite) and M < 0 (M ≤ 0) denotes
a negative definite (negative semidefinite) matrix. If
a, b ∈ R, then sect[a, b] denotes the conic sector de-
fined by {(q, p) : (p − aq)(p − bq) ≤ 0}. For x ∈ Rn,

its norm is defined as ‖x‖ := (xT x)
1
2 . The space of

square integrable functions is denoted by L2, that is,
for any u ∈ L2, ‖u‖2 :=

[∫ ∞
0

uT (t)u(t)dt
] 1

2 is finite.

LPV Antiwindup Control Synthesis
Antiwindup compensation is to modify nominal con-

trollers so that if the signal from the controller is
different from what enters the plant, corrective feed-
back action is employed to reduce the discrepancy.
Because it is impossible to provide a global stabiliz-
ing solution to the antiwindup control problem when
the open-loop plant is unstable, one often needs to de-
termine regional stability for saturation control and
to design controller gain in the guaranteed stability
region.10,11 In Ref. 8, a sector-bounded input non-
linearity, sect[0, 1], was considered for the open-loop
stable plant and is not applicable to exponentially un-
stable systems. However, the derived performance and
stability properties can be improved when the input
nonlinearity is restricted to a smaller sector region. As
a result, this modification leads to regional stability of
the antiwindup compensated system and extends the
antiwindup control technique to exponentially unsta-
ble open-loop systems.

Consider an LPV plant Pρ described by
ẋp

e
y


 =


 Ap(ρ) Bp1(ρ) Bp2(ρ)

Cp1(ρ) Dp11(ρ) Dp12(ρ)
Cp2(ρ) Dp21(ρ) Dp22(ρ)





 xp

d
σ(u)


 (1)

where the plant state xp ∈ Rnp . y ∈ Rny is the
measurement for control, and σ(u) ∈ Rnu is the satu-
rated control input. e ∈ Rne is the controlled output
and d ∈ Rnd is the disturbance input. It is assumed
that the vector-valued parameter ρ evolves continu-
ously over time and its range is limited to a compact
subset P ⊂ Rs. In addition, its time derivative
is assume to be bounded and satisfy the constraint
νi ≤ ρ̇i ≤ ν̄i, i = 1, 2, . . . , s. For notational purposes,
denote V = {v : νi ≤ v ≤ ν̄i, i = 1, 2, . . . , s}, where V
is a given convex polytope in Rs that contains the ori-
gin. Given the sets P and V, the parameter ν-variation
set is defined as

Fν
P =

{
ρ ∈ C1(R+,Rs) : ρ(t) ∈ P, ρ̇(t) ∈ V, ∀t ≥ 0

}
So Fν

P specifies the set of all allowable parameter tra-
jectories. In the interests of notational compactness,
the parameter dependence will not always be shown
from now on.

All matrix valued state-space data are continuous
and have appropriate dimensions. For simplicity, we
assume that

(A1) (Ap, Bp2, Cp2) triple is parameter-dependent
stabilizable and detectable for all ρ. The LPV
system (1) is said to be parameter-dependent sta-
bilizable if there exists continuously differentiable
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matrix functions X(ρ) = XT (ρ) > 0 and F (ρ),
such that for (ρ, ρ̇) ∈ P × V

(Ap + Bp2F )T X + X(Ap + Bp2F ) +
s∑

i=1

ρ̇i
∂X

∂ρi
< 0

(A2) The matrices
[
BT

p2 DT
p12

]
and

[
Cp2 Dp21

]
have full row rank.

(A3) Dp22 = 0.

The actuator nonlinearity under consideration is a
piecewise-linear saturation

σ(ui) =
{

ui |ui| ≤ umax
i

sgn(ui)umax
i |ui| > umax

i

for i = 1, 2, . . . , nu. The antiwindup control structure
is shown in Fig. 1(a).

ρK ρP

ρAW

nominal
controller

antiwindup compensator

d
e

y

u )(uσ

qv

(a) LPV antiwindup controller structure

u q

e d

vq

G

AW

(b) Equivalent transformation

Fig. 1 Nonlinear saturation control diagram.

Following the standard antiwindup procedure, a
nominal LPV controller Kρ is designed first by ig-
noring the input nonlinearity. Different linear control
design techniques can be employed to achieve this goal.
A systematic way to do this is through LPV control
theory.13–15 Due to the assumption (A1), the nomi-
nal controller Kρ is capable of stabilizing the open-loop
system when no input saturation exists, and its design
will determine the nominal performance of the closed-
loop LPV system. We assume that such a controller
is given by

[
ẋk

u

]
=

[
Ak(ρ, ρ̇) Bk(ρ)
Ck(ρ) Dk(ρ)

] [
xk

y

]
+

[
v1

v2

]
(2)

where xk ∈ Rnk . The variables v1, v2 are the auxiliary
inputs provided by an antiwindup compensator. They

are used to condition the nominal controller when the
control input is saturated.

Our objective is to design an LPV antiwindup com-
pensator AWρ such that the adverse effect of input sat-
urations are minimized in terms of induced L2 norm.
The antiwindup compensator is in the form of




ẋaw

v1

v2


 =

[
Aaw(ρ, ρ̇) Baw(ρ)
Caw(ρ, ρ̇) Daw(ρ)

] [
xaw

q

]
(3)

where the state xaw ∈ Rnaw ; the size of the compen-
sator state is determined later on. Such antiwindup
compensation schemes provide a computationally effi-
cient technique for the “retro-fitting” existing uncon-
strained controller Kρ to account for input nonlinear-
ities, thereby eliminating controller windup problems
for input saturated nonlinear systems.

The LPV antiwindup control diagram in Fig. 1(a)
can be transformed to its equivalent form by substitut-
ing the actuator saturation with a deadband nonlinear-
ity ∆i = 1 − σ(ui)

ui
and ∆ = diag{∆1, ∆2, . . . , ∆nu

},
as shown in Fig. 1(b). This allows recasting of
the compensator design problem into a robust control
paradigm.

´
´

´
´

´
´́

¡
¡

¡
¡

¡

¡
¡

¡
¡

¡

´
´

´
´

´
´

´

umax
i

qi slope 0 < k < 1

-

6

ui

Fig. 2 Restricted range input saturation.

It can be seen that the deadband uncertainty ∆i

resides in the conic sector [0, 1]. The magnitude of
the control input signal ui is restricted to be less
than

(
1

1−k

)
umax

i by reducing the nonlinearity ∆i to
sect[0, k] with 0 < k < 1. Consequently, we have
∆ ∈ sect[0, kI]. The resulting stability notion then
becomes regional stability. However, this restriction
of uncertainty ∆ extends the antiwindup scheme to
open-loop exponentially unstable systems.

Let the system Gρ be the interconnection of the
open-loop system Pρ and the nominal controller Kρ,
but exclude the antiwindup compensator. Then its
dynamic equation is




ẋ
u
e
q


 =




A(ρ, ρ̇) B0(ρ) B1(ρ) B2(ρ)
C0(ρ) D00(ρ) D01(ρ) D02(ρ)
C1(ρ) D10(ρ) D11(ρ) D12(ρ)

0 I 0 0







x
q
d
v1

v2




(4)

q = ∆u (5)
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where x ∈ Rn with n = np + nk and ∆ ∈ sect[0, kI].

A =
[
Ap + Bp2DkCp2 Bp2Ck

BkCp2 Ak

]

B0 =
[−Bp2

0

]
, B1 =

[
Bp1 + Bp2DkDp21

BkDp21

]

B2 =
[
0 Bp2

I 0

]
, C0 =

[
DkCp2 Ck

]
C1 =

[
Cp1 + Dp12DkCp2 Dp12Ck

]
D00 = 0, D01 = DkDp21

D02 =
[
0 I

]
, D10 = −Dp12

D11 = Dp11 + Dp12DkDp21, D12 =
[
0 Dp12

]
Note that the state-space data have linear dependency
of parameter rate ρ̇.

Denote xT
cl =

[
xT xT

aw

]
. Then the final closed-loop

system Tρ = F�(Gρ, AWρ) is described by

ẋcl

u
e


 =


 Acl(ρ, ρ̇) B0,cl(ρ) B1,cl(ρ)

C0,cl(ρ, ρ̇) D00,cl(ρ) D01,cl(ρ)
C1,cl(ρ, ρ̇) D10,cl(ρ) D11,cl(ρ)





xcl

q
d



(6)

q = ∆u. (7)

Gathering all parameters of the antiwindup compen-
sator into the single variable

Θ(ρ, ρ̇) =
[
Aaw Baw

Caw Daw

]

and introducing the shorthands:

A(ρ, ρ̇) =
[
A 0
0 0

]

B0(ρ) =
[
B0

0

]
, B1(ρ) =

[
B1

0

]
C0(ρ) =

[
C0 0

]
, C1(ρ) =

[
C1 0

]

PT

1 (ρ)
PT

2 (ρ)
PT

3 (ρ)


 =




0 B2

I 0
0 D02

0 D12




[Q1 Q2 Q3

]
=

[
0 I 0 0
0 0 I 0

]

the closed-loop state-space data related to the inter-
connected system Gρ and the antiwindup compensator
AWρ is as follows


 Acl B0,cl B1,cl

C0,cl D00,cl D01,cl

C1,cl D10,cl D11,cl




=


A B0 B1

C0 D00 D01

C1 D10 D11


 +


PT

1

PT
2

PT
3


 Θ

[Q1 Q2 Q3

]
. (8)

As expected, the closed-loop state-space data depend
on the antiwindup compensator gain in affine form.
The following theorem provides a synthesis condition
for the antiwindup compensator.

Theorem 1 (Synthesis Condition for LPV Anti-
windup Compensator)
Given a scalar 0 < k < 1, the LPV open-
loop system Pρ with a parameter-dependent stabiliz-
ing nominal controller Kρ, if there exists a pair of
positive-definite matrix functions R11(ρ) ∈ Snp×np

+ ,
S(ρ) ∈ Sn×n

+ and a diagonal matrix function V (ρ) =
diag {v1(ρ), · · · , vnu

(ρ)} > 0 satisfying


R11A
T
p + ApR11 − 2(1−k)

k2 Bp2V BT
p2 −

s∑
i=1

ρ̇i
∂R11

∂ρi

Cp1R11 − 2(1−k)
k2 Dp12V BT

p2

BT
p1

R11C
T
p1 − 2(1−k)

k2 Bp2V DT
p12 Bp1

−γIne
− 2(1−k)

k2 Dp12V DT
p12 Dp11

DT
p11 −γInd


 < 0 (9)




SA + AT S +
s∑

i=1

ρ̇i
∂S

∂ρi
SB1 CT

1

BT
1 S −γInd

DT
11

C1 D11 −γIne


 < 0

(10)
 R11

[
Inp

0
][

Inp

0

]
S


 ≥ 0 (11)

for all (ρ, ρ̇) ∈ P × V, then there exists an np-th
order LPV antiwindup compensator AWρ to stabilize
the closed-loop system quadratically and have the per-
formance ‖e‖2 < γ‖d‖2 for all ρ(·) ∈ Fν

P when the

condition |ui| ≤
(

1
1−k

)
umax

i , i = 1, 2, . . . , nu holds.

Proof: Consider a Lyapunov function V (x) =
xT Xcl(ρ)x for the closed-loop system Tρ, then a suffi-
cient condition for the stability and performance can
be established from the inequality

V̇ +
1
γ

eT e − γdT d + 2qT W (ku − q) < 0

using S-procedure. Note that it is equivalent to


AT
clXcl + XclAcl +

s∑
i=1

ρ̇i
∂Xcl

∂ρi

BT
0,clXcl + kWC0,cl

BT
1,clXcl

C1,cl

∗ ∗ ∗
k(WD00,cl + DT

00,clW ) − 2W ∗ ∗
kDT

01,clW −γI ∗
D10,cl D11,cl −γI


 < 0

(12)
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where ∗ in the upper triangle means symmetric. Us-
ing the expressions in (8), the inequality (12) can be
rewritten as follows

Ψ(ρ, ρ̇)+PT (ρ)Θ(ρ, ρ̇)Q+QT ΘT (ρ, ρ̇)P(ρ) < 0 (13)

with

Ψ =




AT Xcl + XclA +
s∑

i=1

ρ̇i
∂Xcl

∂ρi

BT
0 Xcl + kWC0

BT
1 Xcl

C1

∗ ∗ ∗
k(WD00 + DT

00W ) − 2W ∗ ∗
kDT

01W −γI ∗
D10 D11 −γI




P =
[P1Xcl kP2W 0 P3

]
Q =

[Q1 Q2 Q3 0
]

Partition the matrix Xcl compatibly to the states of
an interconnected system Gρ and antiwindup compen-
sator AWρ as n = np + nk and naw, and let

Xcl(ρ) =
[

S(ρ) N(ρ)
NT (ρ) ?

]

X−1
cl (ρ) =

[
R(ρ) M(ρ)

MT (ρ) ?

]

=


 R11(ρ) R12(ρ)

RT
12(ρ) R22(ρ) M(ρ)

MT (ρ) ?




where MNT = I − RS, and “?” means the elements
“we don’t care”. According to elimination lemma,16

the inequality (13) is equivalent to

N T
P (ρ)Ψ(ρ, ρ̇)NP(ρ) < 0 N T

QΨ(ρ, ρ̇)NQ < 0 (14)

where NP and NQ are the null spaces of matrices P
and Q, which are

NP = diag
{

X−1
cl ,

1
k

W−1, I, I

}



I 0 0
0 0 0
0 0 0

−BT
p2 −DT

p12 0
0 0 I
0 I 0




NQ =




I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0
0 0 I 0
0 0 0 I




Denote V (ρ) = W−1(ρ). Through lengthy algebraic
manipulations, it can be shown that N T

P ΨNP < 0 and

N T
QΨNQ < 0 are the same as conditions (9) and (10),

respectively.
Given the definition for matrices Xcl and X−1

cl , the
coupling condition between R and S would be[

R I
I S

]
≥ 0 and rank(R − S−1) ≤ naw

for all ρ ∈ P. Because only the (1, 1) element of R
matrix is constrained in the LMIs (9)–(11), it is al-
ways possible to augment matrix R11 to R in satisfying
the above coupling condition. For example, one may
choose

R =




R11

[
I 0

]
S−1

[
0
I

]
[
0 I

]
S−1

[
I
0

] [
0 I

]
S−1

[
0
I

]



The resulting R matrix is positive definite because of
the condition (11). Also, R − S−1 ≥ 0 is satisfied for
the selected R matrix. The rank condition is trivially
satisfied if one chooses naw = np. So we obtain
the desired synthesis condition for the antiwindup
compensator. Q.E.D.

Remark 1 The minimum order of an antiwindup
compensator that can always be synthesized by a con-
vex condition is np.8 However, if we enforce R = S−1,
then it is possible to solve a modified LMI optimization
problem from (9)–(11)


R11A

T
p + ApR11 − 2(1−k)

k2 Bp2V BT
p2 −

s∑
i=1

ρ̇i
∂R11

∂ρi

Cp1R11 − 2(1−k)
k2 Dp12V BT

p2

BT
p1

R11C
T
p1 − 2(1−k)

k2 Bp2V DT
p12 Bp1

−γI − 2(1−k)
k2 Dp12V DT

p12 Dp11

DT
p11 −γI


 < 0 (15)




AR + RAT −
s∑

i=1

ρ̇i
∂R

∂ρi
B1 RCT

1

BT
1 −γI DT

11

C1R D11 −γI


 < 0 (16)

R =
[
R11 R12

RT
12 R22

]
> 0 (17)

This results in a static LPV antiwindup compensator.
However, the modified LMIs do not necessarily have a
solution.

Recall that the LPV antiwindup compensator syn-
thesis problem is originally formulated as a robust
control problem. This usually leads to a noncon-
vex solvability condition as bilinear matrix inequalities
(BMIs). However, due to the special structure of the
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antiwindup controller, the resulting synthesis condi-
tion is convex in terms of matrix variables R11, S,
and V . In fact, the solvability condition for the LPV
antiwindup compensator is provided as an infinite-
dimensional LMI optimization problem, for which an
efficient numerical algorithm exists to solve it approx-
imately.17 This can be done by parameterizing the
matrix variables using a finite set of scalar basis func-
tions as

R11(ρ) =
Nf∑
i=1

fi(ρ)R11,i S(ρ) =
Ng∑
j=1

gj(ρ)Sj

V (ρ) =
Nh∑
k=1

hk(ρ)Vk

where {fi(ρ)}Nf

i=1 , {gj(ρ)}Ng

j=1 and {hi(ρ)}Nh

k=1 are user-
specified scalar basis functions. R11,i, Sj , and Vk are
new optimization variables to be determined. After
such a parameterization, the LPV synthesis conditions
can be solved using a gridding method over the param-
eter space.

After solving R11, S, and V matrix functions, the
LPV antiwindup compensator gain can be determined
by either solving the feasibility problem from the
closed-loop LMI (13) or the antiwindup compensator
can be constructed explicitly as shown in the follow-
ing theorem. The explicit construction approach is
advantageous because it avoids possible numerical ill-
condition when solving the above feasibility LMI prob-
lem. Moreover, it connects the antiwindup controller
directly to the plant and nominal controller gains.

Theorem 2 (LPV Antiwindup Compensator Con-
struction)
Given the solutions R11, S, γ and V = W−1 of the
LMIs (9)–(11), let MNT = In − RS with M,N ∈
Sn×np and ET =

[
Inp

0
]
, then one np-th order

LPV antiwindup compensator AWρ can be constructed
through the following scheme:

1. Compute a feasible D̂aw(ρ) ∈ Rnu×nu such that


 −k(WD̂aw + D̂T

awW ) + 2W ∗ ∗
−kDT

01W γInd
∗

−(D10 + Dp12D̂aw) −D11 γIne


 > 0

for all ρ ∈ P. Denote the above inequality as
Π(ρ).

2. Compute the least square solutions of the following
linear equations for B̂aw(ρ) ∈ Rn×nu , Ĉaw(ρ) ∈

Rnu×np




0 Inu
0 0

Inu

0
0

−Π




[
B̂T

aw

?

]

= −




0nu×n

BT
0 S + kWC0

BT
1 S
C1







0 kWT 0 DT
p12

kW
0

Dp12

−Π




[
Ĉaw

?

]

= −




BT
p2

(BT
0 + kWC0RE + D̂T

awBT
p2

BT
1 E

C1RE




and the matrix Âaw(ρ, ρ̇) ∈ Rn×np as

Âaw = −ρ̇
dS

dρ
RE − ρ̇

dN

dρ
MT E − AT E

− [
SB0 + B̂aw + kCT

0 W SB1 CT
1

]
Π−1

×

(BT

0 + kWC0R)E + D̂T
awBT

p2 + kWĈaw

BT
1 E

C1RE + Dp12Ĉaw




3. Convert the transformed antiwindup compensator
gain to its original state-space data by

[
Aaw Baw

Caw Daw

]
=

[
N SB2

0
[
0 Inu

]]−1

×
([

Âaw B̂aw

Ĉaw D̂aw

]
−

[
SARE 0

0 0nu×nu

])

×
[
MT E 0

0 Inu

]−1

Proof: The derivation of the antiwindup controller
formula basically follows the procedure outlined in Ref.
12. Define

Z1 =
[
I RE
0 MT E

]
, Z2 =

[
S E

NT 0

]

Then it can be shown that XclZ1 = Z2. Also we have
the following congruent transformation:

ZT
1 XclZ1 =

[
S E

ET ET RE

]

ZT
1

dXcl

dt
Z1 =

[
dS
dt (R dS

dt + M dNT

dt )T E

ET (R dS
dt + M dNT

dt ) −ET dR
dt E

]
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ZT

1 XclAclZ1 ZT
1 XclB0,cl ZT

1 XclB1,cl

C0,clZ1 D00,cl D01,cl

C1,clZ1 D10,cl D11,cl




=




SA 0 SB0 SB1

ET A ET ARE ET B0 ET B1

C0 C0RE D00 D01

C1 C1RE D10 D11




+




In 0
0 Bp2

0 I
0 Dp12




[
Âaw B̂aw

Ĉaw D̂aw

] [
0 Inp

0 0
0 0 I 0

]

where[
Âaw B̂aw

Ĉaw D̂aw

]
=

[
SARE 0

0 0

]

+
[
N SB2

0
[
0 I

]] [
Aaw Baw

Caw Daw

] [
MT E 0

0 I

]

Multiply diag
{
ZT

1 , I, I, I
}

from the left side and its
conjugate transpose from the right side of eq. (13),
and we get 

 H11 ∗ ∗
H21 H22 ∗
L1 L2 −Π


 < 0 (18)

with the shorthand notation

H11 = SA + AT S +
s∑

i=1

ρ̇i
∂S

∂ρi

H21 = ET A + ÂT
aw + ET (R

dS

dt
+ M

dNT

dt
)

H22 = ET (AR + RAT −
s∑

i=1

ρ̇i
∂R

∂ρi
)E

+ Bp2Ĉaw + ĈT
awBT

p2

L1 =


BT

0 S + B̂T
aw + kWC0

BT
1 S
C1




L2 =


(BT

0 + kWC0R)E + D̂T
awBT

p2 + kWĈaw

BT
1 E

C1RE + Dp12Ĉaw




By Schur complement, it is equivalent to[
H11 + LT

1 Π−1L1 ∗
H21 + LT

2 Π−1L1 H22 + LT
2 Π−1L2

]
< 0 (19)

Clearly, the lower (3 × 3) matrix of the inequality
(18) must be negative definite, this determines the fea-
sible D̂aw. Let the (2, 1) element be equal to zeros and
one can solve for Âaw. This also leads to decoupled
LMIs from the inequality (19). Then B̂aw, Ĉaw terms
can be solved from the (1, 1) and (2, 2) elements of the
decoupled inequality (19). Note that both inequalities
have regular solutions.18

The (1, 1) element of the above matrix inequality
corresponds to LMI (10) after elimination of the
variables B̂aw and D̂aw. It can also be shown that the
(2, 2) element is equivalent to LMI (9) by eliminating
Ĉaw, D̂aw. Q.E.D.

The explicit antiwindup construction scheme can
also be applied to open-loop stable systems. How-
ever, because the synthesis condition for an open-loop
stable plant does not involve matrix W ,8 we need to
solve the feasible D̂aw and W matrices altogether at
the first step. The remaining steps are the same by
setting k = 1.

Saturation Control for Flight Dynamics
In this section, the proposed LPV antiwindup con-

trol synthesis technique is applied to flight dynamics.
The system to be controlled is the longitudinal F-16
aircraft model based on NASA Langley Research Cen-
ter (LaRC) wind tunnel tests,19 which is described by
Stevens and Lewis in great detail.20 The full nonlin-
ear longitudinal model of an F-16 aircraft is given as
follows:

V̇ =
qSc

2mV
[Cxq cos α + Czq sinα] q + T

cos α

m

− g sin(θ − α) +
qS

m
[Cz cos α + Cz sin α] (20)

α̇ =
[
1 +

qSc

2mV 2
(Czq cos α − Cxq sinα)

]
q − T

sin α

mV

+
g

V
cos(θ − α) +

qS

mV
[Cz cos α − Cx sinα] (21)

q̇ =
qSc

2IyV
[cCmq + ∆Czq] q +

qSc

Iy

[
Cm +

∆
c

Cz

]
(22)

θ̇ = q (23)

The aerodynamic coefficients are provided as lookup
tables from NASA LaRC wind tunnel tests on a scale
model of F-16 aircraft. The data apply to the speed
range up to about Mach 0.6, and cover a very wide
range of angle of attack (−20◦ ≤ α ≤ 90◦). How-
ever, conventional aerodynamic math models for use
in aircraft simulation or flight control design have be-
come increasingly deficient in the poststall region. So,
the investigation on the robust control of aircraft in
the high angle of attack region with uncertain aero-
dynamic coefficients is one of the challenging research
topics.

The F-16 is powered by an afterburning turbofan
jet engine, which produces a thrust force in the x axis.
The NASA data include a model of the engine in which
the thrust response is modeled with a first-order lag;
the lag time constant is a function of the actual engine
power level and the commanded power. The throttle
position is related to the commanded power level. For

7 of 11

American Institute of Aeronautics and Astronautics Paper 2003-5495



convenience, the actual power level is also considered
as a state variable in longitudinal dynamics.

The nonlinear model is then linearized at trim con-
ditions to generate state-space models for design. The
state and input variables are as follows:

x =




V true airspeed (ft/s)
α angle of attack (rad)
q pitch rate (rad/s)
θ pitch angle (rad)
pow actual power level (0–100)

u =

{
δth throttle position (0–1)
δe elevator angle (deg) (−25◦–25◦)

By slight abuse of notations, the above listed variables
are perturbations from their equilibrium states. In ad-
dition, V , q, and flight path angle γ are selected as
outputs. The operating envelope of interest covers air-
craft speeds between 160 ft/s and 200 ft/s and angles of
attack between 20◦ and 45◦. These two variables are
used as scheduling parameters in the LPV modeling
of F-16 longitudinal dynamics. Fig. 3 shows the flight
trim points for the control design. The corresponding
dynamic pressure of the designed range is between 20
psf and 50 psf. This portion of flight envelope is cho-
sen because the moderately high angle of attack and
the low dynamic pressure cause aerodynamic control
surface saturation.

0.14 0.16 0.18 0.2
0

3000

6000

9000

12000

15000

18000

Mach number

al
tit

ud
e 

(f
t)

Fig. 3 Flight trim points.

The design objective of the nominal LPV controller
in this research is to track the flight path angle com-
mand with the tracking error about 1.25% of the com-
mand in the steady state. This kind of problem is
formulated as a model-following problem,21,22 where
the ideal model to be followed is chosen to be a second-
order filter based on desired flying qualities

γideal

γcmd
=

ω2
ideal

s2 + 2ζidealωideals + ω2
ideal

(24)

The implicit model-following framework allows for di-
rect incorporation of flying quality specifications into
the control design. A block diagram of the system in-
terconnection structure for synthesizing the nominal
controller is shown in Fig. 4.

P

pW

nW

idealW

uW

V
q

pe

}3{ny

cmd

cmd

th

cmd

e
ue

_

actW

th

th

e

e

Fig. 4 Open-loop interconnection for LPV control
design.

The weighting functions are chosen as

Wp =
80(s/5 + 1)
s/0.05 + 1

Wn = diag{0.8, 0.6, 0.1}

Wu = diag
{

1, 10,
1
50

,
1

120

}

Wideal =
2.25

s2 + 2.4s + 2.25

The throttle and elevator actuator dynamics are mod-
eled as first order filters.

δth

δcmd
th

=
5

s + 5
δe

δcmd
e

=
20

s + 20

Both the position and the rate of control inputs are
fed into Wu to penalize the control effort. Therefore,
the system matrix of Wact is derived as follows.

Wact = diag
{[ 5

s+5
5s

s+5

]
,

[ 20
s+20
20s

s+20

]}

The nominal controller is designed by formulating
an LPV synthesis problem, which can be solved us-
ing either a single or parameter-dependent quadratic
Lyapunov function over all gridding points in the two
dimensional parameter space.13,14 In this work, the
single quadratic Lyapunov function (SQLF) approach
is chosen to reduce the computation time in the nom-
inal LPV control synthesis phase. The performance
obtained through the SQLF approach is γnom = 8.0.

The nonlinear F-16 longitudinal dynamics with the
nominal LPV controller Kρ is simulated, and the mag-
nitude limits of actuators are enforced during the sim-
ulation. One designed flight condition is used as the
test point, which is a trimmed flight at V = 160 ft/s
and α = 35◦. Figures 5 and 6 show the nonlinear
time responses of the aircraft model to the flight path
doublet input with different magnitudes.

It is observed that when flight path doublet input
is equal to ±1◦, the positions of throttle and eleva-
tor are not saturated. The simulation result of the
flight path shows that the measurement matches the
ideal response very well. For comparison, the nonlin-
ear time response for a more drastic ±2◦ flight path
doublet input is shown in Fig. 6. It should require
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more control actions of the actuators to achieve the
performance objective. Unfortunately, the elevator is
saturated severely and thus makes the system unsta-
ble.

The proposed LPV antiwindup scheme is applied to
the control of the F-16 aircraft, and we also choose
the SQLF approach to perform the LPV synthesis.
A series of LPV antiwindup compensators AWρ are
designed by gradually decreasing k value from 1 to
0.90. Table 1 shows the corresponding performance
level γ. Because one of the gridding points is unstable,
the synthesis condition for LPV antiwindup control
is infeasible for k = 1. Compared with the nom-
inal performance, the worst performance level when
k = 1−10−5 indicates the strong adverse effect of sat-
uration nonlinearity. When k = 0.90, the antiwindup
compensator almost recovers the nominal closed-loop
performance γnom.

Table 1 H∞ performance level vs. sector range
[0, kI].

Sector range [0, kI] H∞ performance γ
1 − 10−5 1596.38
1 − 10−4 258.30
1 − 10−3 32.16

0.99 8.41
0.90 8.00

Now, a ±2◦ flight path command input is applied
to the F-16 aircraft system with the antiwindup com-
pensator. The time response of the nonlinear system
at the same trimmed condition is tested. As shown in
Fig. 7, the antiwindup compensator not only stabilizes
the system when saturation occurs, but also provides
fairly good recovery of tracking performance.

Conclusion
We have developed an antiwindup control scheme

for LPV systems and applied the proposed saturation
control scheme to F-16 aircraft. Due to the special
structure of the antiwindup control scheme, the LPV
antiwindup control synthesis condition is solvable by
LMI optimizations. The extension of the antiwindup
control idea to LPV systems provides a practical ap-
proach for nonlinear flight dynamics in the presence
of actuator saturation. Saturation control is par-
ticularly important to near stall and poststall flight
conditions. By augmenting the nominal longitudinal
autopilot with antiwindup compensator, it was shown
through nonlinear simulation that the F-16 aircraft
maintains its stability and has adequate control perfor-
mance in a high angle of attack. Applying antiwindup
control scheme to flight control is promising because no
additional actuator is needed to compensator control
authority. In fact, the implementation of antiwindup
controllers could be done by modifying flight control
software.
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Fig. 5 Nonlinear simulation of F-16 dynamics to
±1◦ flight path doublet input.
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Fig. 6 Nonlinear simulation of F-16 dynamics to
±2◦ flight path doublet input.
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Fig. 7 Saturation control of F-16 dynamics using
LPV antiwindup compensator.
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